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Abstract

Linear algebra is used to derive the main formulas of linear regression—those determining
the fit parameters and their covariance matrix in terms of the data and their covariance
matrix. It is also used to demonstrate various assertions, notably that the expectation value
of the chi-square statistic χ2 is equal to the degrees of freedom—the number of data points
less the number of fit parameters. The principles and formulas involved are also applied to
nonlinear fitting functions and the required approximations and formula modifications are
given. Relative to their best-fit values, the change in χ2 is shown to be a quadratic function
of the change in fit parameters. The quadratic is shown to demonstrate the “∆χ2 = 1” rule—
that if any fit parameter is offset one standard deviation from its best-fit value, the minimum
χ2 will increase by one. All unspecified parameters must be re-fit with the offset parameter
held fixed; multiplying the parameter changes that reachieve the new minimum χ2 + 1 by the
fixed parameter’s one-sigma offset are shown to give the covariances with the fixed parameter.

Statement and Solution

The dependent variable is represented by the set {yi}, its N elements yi, i = 1...N , or the
column vector y (of length N whose ith element is yi). Each yi is assumed to be a random
sample from its own Gaussian distribution. The one-sigma uncertainty σi in each yi is assumed
known in advance and determines the standard deviation of the distribution from which yi is
a sample. All yi are assumed to be statistically independent and thus the N × N covariance
matrix

[
σy
]

has non-zero elements only on the diagonal.

[
σy
]
ij

= σ2
i δij (1)

Usually not known in advance, the distributions’ means µi, i = 1...N (column vector µ)
are predicated on experimental conditions associated with point i (such as the value xi of an
independent variable) and theoretical considerations. The theory provides a fitting function
Fi({αj}) predicting µi in terms of a set of M fitting parameters αj, j = 1...M , (column vector
α).

µi = Fi ({αj}) (2)
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In addition to the true parameter values {αj} that determine the true means, another
parameter set is of paramount importance. The best-fit parameter values are denoted aj,
j = 1...M (column vector a), and are defined by the condition that they minimize the χ2

for a particular data set {yi}. The best-fit parameters then determine the associated best-fit
y-values denoted yfit

i , i = 1...N (column vector yfit)

yfit
i = Fi ({aj}) (3)

For linear regression techniques to apply, the functions Fi ({aj}) are restricted to a form
that is linear in the fitting parameters. One such form arises when an independent variable,
say xi, is specified for each yi and Fi ({aj}) can be expressed as a superposition of linearly
independent functions fj(x) of the independent variable.

yfit
i =

M∑
j=1

ajfj(xi) (4)

For example, for a quadratic fit: yfit
i = a1 + a2xi + a3x

2
i and the three corresponding functions

are f1(x) = 1, f2(x) = x, f3(x) = x2. The functions Fi ({aj}) are linear in the regression coef-
ficients because the coefficients only appear as amplitudes and do not appear in the functions
fj(x). More specifically, the derivative of all Fi ({aj}) with respect to every aj is independent
of the complete set {aj}.

Explicitly representing the N values fj(xi), i = 1...N as a column vector fj , the full set

of M such vectors becomes an N ×M matrix
[
J
]
; one column of length N for each of the

M functions. This form is typically required for spreadsheet linear regression programs and
when constructed from functions of an independent variable xi, the matrix elements are[

J
]
ij

= fj(xi) (5)

On the other hand, the column constructions need not be so constrained. For example, entries
might depend on more than one independent variable. The only requirement for a unique
solution is that all columns be linearly independent.

With this restriction on the fitting function, Eq. 4 can then be expressed

yfit =
[
J
]
a (6)

and the relation between the true means and true parameters becomes

µ =
[
J
]
α (7)

The chi-square,

χ2 =
N∑
i=1

(
yi − yfit

i

)2

σ2
i

(8)

can be expressed as the following weighted inner product

χ2 =
(
yT − yfitT

) [
σ−1
y

] (
y − yfit

)
(9)
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where yT and yfitT are the corresponding transposes (row vectors) and
[
σ−1
y

]
is the weighting

matrix—the inverse of
[
σy
]
, an N ×N diagonal matrix with elements

[
σ−1
y

]
ij

=
1

σ2
i

δij (10)

Be sure to appreciate the accuracy and elegance of these simple relations. For example, keep
track of the multiplication rules and vector and matrix sizes to verify the sums involved and
the dimensionality of any intermediate or final results.

Substituting Eq. 6 and its transpose yfitT = aT
[
JT
]

into Eq. 9 shows how χ2 would depend
on a

χ2 =
(
yT − aT

[
JT
]) [

σ−1
y

] (
y −

[
J
]
a
)

(11)

By temporarily treating the fit parameters as variables, the best-fit {aj} will be determined
from the fact that the derivatives dχ2/daj are zero for all aj at the χ2 minimum.

An expression for these derivatives is obtained by first noting that

da/daj = δj (12)

where δj is a column vector of length M with the only non-zero element being a unity element
in the jth position. Then, simple chain rule differentiation of Eq. 11 gives

dχ2

daj
= −δTj

[
JT
] [
σ−1
y

] (
y −

[
J
]
a
)
−
(
yT − aT

[
JT
]) [

σ−1
y

] [
J
]
δj (13)

And noting that [
J
]
δj = fj (14)

along with the transpose equation δTj
[
JT
]

= fTj gives

dχ2

daj
= −fTj

[
σ−1
y

] (
y −

[
J
]
a
)
−
(
yT − aT

[
JT
]) [

σ−1
y

]
fj (15)

As they should be, both terms on the right are scalars and are in fact the same scalars, simply
formed with expressions that are transposes of one another. Choosing the left-hand expression
gives

dχ2

daj
= −2fTj

[
σ−1
y

] (
y −

[
J
]
a
)

(16)

The M equations for the chi-square minimum, i.e., dχ2/daj = 0 for each aj, are then
obtained by setting the right side of Eq. 16 equal to zero for each j. These equations can be
rewritten

fTj
[
σ−1
y

] [
J
]
a = fTj

[
σ−1
y

]
y (17)

for j = 1...M . These equations are just the M components of the vector equation[
JT
] [
σ−1
y

] [
J
]
a =

[
JT
] [
σ−1
y

]
y (18)
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One cannot simply cancel the matrix product
[
JT
] [
σ−1
y

]
on both sides.

[
JT
] [
σ−1
y

]
is not

square and does not possess a unique inverse. However, defining[
X
]

=
[
JT
] [
σ−1
y

] [
J
]

(19)

which is an M ×M matrix and does have a unique inverse
[
X−1

]
(if all columns of

[
J
]

are

linearly independent), Eq. 18 then becomes[
X
]
a =

[
JT
] [
σ−1
y

]
y (20)

Multiplying both sides by
[
X−1

]
on the left, gives the solution

a =
[
X−1

] [
JT
] [
σ−1
y

]
y (21)

Defining the combination [
J†
]

=
[
X−1

] [
JT
] [
σ−1
y

]
(22)

gives the final result
a =

[
J†
]
y (23)

Equation 23 says that the M regression coefficients a are obtained by a simple multiplica-
tion between an M ×N matrix

[
J†
]

and the N -component vector y. Moreover, the recipe for[
J†
]

has only two ingredients: the regression functions
[
J
]

and the data uncertainties
[
σy
]
.

It does not depend on the data y. Consequently, assuming the regression functions and data
uncertainties can be determined before an experiment is performed, so too can

[
J†
]
. This

principal is behind such constructs as Savitsky-Golay filters for smoothing and differentiating
data uniformly acquired in time.[

J†
]

is called the weighted Moore-Penrose pseudoinverse of
[
J
]
. One inverse-like property

between them is demonstrated by Eqs. 6 and 23:
[
J
]
a = yfit and

[
J†
]
y = a. One matrix

undoes what the other does to the extent that y ≈ yfit.

Expectation values

Expectation values provide important information about linear regression results. If the data
set {yi} could be sampled over and over again, what should be expected for the returned
parameters’ means, variances and correlations? How big a χ2 should be expected?

Parameter expectation values

For example, taking the expectation value of both sides of Eq. 23

〈a〉 =
〈[
J†
]
y
〉

(24)
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would be the start of a proof to demonstrate that the parameters will average to their predicted
mean, 〈aj〉 = αj.

Expectation values are with respect to the random variables yi. Because
[
X
]
,
[
σy
]
,
[
J
]

and
[
J†
]

(and their inverses or transposes) do not depend on the yi, they can be factored out
when evaluating the expectation value on the right side of Eq. 24. Furthermore, each yi is
from a distribution of mean µi. Thus, 〈yi〉 = µi and

〈y〉 = µ (25)

Factoring out the constant
[
J†
]

from the right side of Eq. 24, then substituting Eqs. 22 and

25 for
[
J†
]

and 〈y〉, followed by substitutions using Eqs. 7 and 19 for µ and
[
X
]

gives

〈a〉 =
[
J†
]
〈y〉

=
[
X−1

] [
JT
] [
σ−1
y

]
µ

=
[
X−1

] [
JT
] [
σ−1
y

] [
J
]
α

=
[
X−1

] [
X
]
α

= α (26)

where a cancellation of the identity matrix
[
X−1

] [
X
]

completes the proof.
Taking expectation values of Eq. 23 now demonstrates

α =
[
J†
]
µ (27)

And finishing the cycle by substituting Eq. 7 for µ illustrates another inverse-like property of
the pseudoinverse

[
J†
]
:

α =
[
J†
] [
J
]
α (28)

which implies that
[
J†
] [
J
]

is an M ×M identity matrix.

[
J†
] [
J
]

=
[
I
]

(29)

A solution for
[
J†
]

satisfying only Eq. 29 is not unique. The pseudoinverse is unique

because
[
J†
]
y gives the best-fit parameters a that minimize the χ2. Equation 29 is a result,

not a requirement.

Parameter variances and covariances

Determining the M ×M covariance matrix for the fitting parameters starts with the defining
equations for its elements [

σa
]
jk

= 〈(aj − αj)(ak − αk)〉 (30)
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where 〈aj〉 = αj has been used. By definition, these are just the elements of the expectation
value of the matrix obtained from the outer product of the column vector a − α and its
corresponding row vector aT −αT .[

σa
]

=
〈(

a−α
) (

aT −αT
)〉

(31)

Substituting Eq. 23 and its transpose aT = yT
[
J†T

]
in Eq. 31 gives

[
σa
]

=
〈([

J†
]
y −α

) (
yT

[
J†T

]
−αT

)〉
(32)

Expanding the product and factoring constant matrices from expectation values where appro-
priate [

σa
]

=
[
J†
] 〈
yyT

〉 [
J†T

]
−
[
J†
]
〈y〉αT −α

〈
yT
〉 [
J†T

]
+ααT (33)

Substituting Eq. 25 and its transpose
〈
yT
〉

= µT in the middle two terms above and then

substituting Eq. 27 and its transpose µT
[
J†T

]
= αT in these terms leaves

[
σa
]

=
[
J†
] 〈
yyT

〉 [
J†T

]
−
[
J†
]
µαT −αµT

[
J†T

]
+ααT

=
[
J†
] 〈
yyT

〉 [
J†T

]
−ααT −ααT +ααT

=
[
J†
] 〈
yyT

〉 [
J†T

]
−ααT (34)

To take the expectation value in the first term on the right note that the matrix yyT is
an N × N symmetric matrix with elements

[
yyT

]
ij

= yiyj. Further noting that 〈yiyj〉 =

µiµj + σ2
i δij gives 〈

yyT
〉

= µµT +
[
σy
]

(35)

and Eq. 34 becomes [
σa
]

=
[
J†
]
µµT

[
J†T

]
+
[
J†
] [
σy
] [
J†T

]
−ααT (36)

Using Eq. 27 and its transpose µT
[
J†T

]
= αT shows that the first and last term cancel giving

[
σa
]

=
[
J†
] [
σy
] [
J†T

]
(37)

Substituting Eq. 22 and its transpose
[
J†T

]
=
[
σ−1
y

] [
J
] [
X−1

]
gives

[
σa
]

=
[
X−1

] [
JT
] [
σ−1
y

] [
σy
] [
σ−1
y

] [
J
] [
X−1

]
=

[
X−1

] [
JT
] [
σ−1
y

] [
J
] [
X−1

]
=

[
X−1

] [
X
] [
X−1

]
=

[
X−1

]
(38)



7

Equation 38 gives the recipe for the parameter variances and covariances. Find the inverse
of the M × M matrix

[
X
]

whose two ingredients are the same as before: the regression

functions
[
J
]

and the data uncertainties
[
σy
]
. It does not depend on y. Consequently, to the

extent that the regression functions and the data uncertainties can be predetermined, so too
can the parameter uncertainties. This fact can be useful in experimental design.

The expectation value of χ2

Distinct from the “best-fit” χ2 given by Eq. 8 and based on {yfit
i }, a “true” χ2 can be defined

based on the true means {µi} and expressed

χ2 =
N∑
i=1

(yi − µi)2

σ2
i

(39)

It is easy to show that the expectation values of this χ2 evaluates to N . By the definition of
sample variance, σ2

i =
〈
(yi − µi)2

〉
, each of the N terms in Eq. 39 has an expectation value of

unity and thus the sum evaluates to N .
Because the true parameters and true means are not generally known, the true χ2 cannot

generally be calculated. Exceptions occur in simulations such as those in the spreadsheet that
accompanies this paper. Obviously, once the best-fit parameters are determined, {yfit

i } and
the best-fit χ2 of Eq. 8 can then be calculated. However, the best-fit χ2 is clearly a different
statistic from the true χ2. Most importantly, the best-fit parameters are chosen to minimize
the chi-square for a particular data set. Using any other parameter set—including the true
parameters—can only make the chi-square increase. Consequently, the best-fit chi-square will
always be smaller than the true chi-square for that particular data set. How much smaller
(on average) is the question to be answered next.

Before evaluating the expectation value of the best-fit χ2, let’s again evaluate the expec-
tation value of the true χ2—this time proceeding from the matrix algebra form of Eq. 39

χ2 =
(
yT − µT

) [
σ−1
y

] (
y − µ

)
(40)

Of course, it will give the known result 〈χ2〉 = N , but the process will demonstrate techniques
that will be used again for evaluating the expectation value of the best-fit χ2.

The evaluation proceeds as follows:〈
χ2
〉

=
〈(
yT − µT

) [
σ−1
y

] (
y − µ

)〉
(41)

Expanding the product, factoring out constants, and using Eq. 25 and its transpose gives〈
χ2
〉

=
〈
yT

[
σ−1
y

]
y
〉
−
〈
yT
〉 [
σ−1
y

]
µ− µT

[
σ−1
y

]
〈y〉+ µT

[
σ−1
y

]
µ

=
〈
yT

[
σ−1
y

]
y
〉
− µT

[
σ−1
y

]
µ− µT

[
σ−1
y

]
µ+ µT

[
σ−1
y

]
µ

=
〈
yT

[
σ−1
y

]
y
〉
− µT

[
σ−1
y

]
µ (42)
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The expectation value of an N by N matrix
[
Q
]

in the form
〈
yT

[
Q
]
y
〉

can be simplified
by examining the implicit multiplications of such a vector-matrix-vector product.

yT
[
Q
]
y =

N∑
i=1

N∑
j=1

yi
[
Q
]
ij
yj (43)

Noting that 〈yiyj〉 = µiµj + σ2
i δij gives

〈
yT

[
Q
]
y
〉

=
N∑
i=1

N∑
j=1

〈
yi
[
Q
]
ij
yj

〉

=
N∑
i=1

N∑
j=1

[
Q
]
ij
〈yiyj〉

=
N∑
i=1

N∑
j=1

[
Q
]
ij

(
µiµj + σ2

i δij
)

=
N∑
i=1

N∑
j=1

µi
[
Q
]
ij
µj +

N∑
i=1

[
Q
]
ii
σ2
i (44)

or 〈
yT

[
Q
]
y
〉

= µT
[
Q
]
µ+ Tr

([
Q
] [
σy
])

(45)

Where the trace of any N ×N square matrix
[
B
]

is the sum of its diagonal elements

Tr
([
B
])

=
N∑
i=1

[
B
]
ii

(46)

Applying Eq. 45 to the first term on the right side of Eq. 42 gives〈
yT

[
σ−1
y

]
y
〉

= µT
[
σ−1
y

]
µ+ Tr

[
σ−1
y

] [
σy
]

= µT
[
σ−1
y

]
µ+ Tr

[
I
]

= µT
[
σ−1
y

]
µ+N (47)

where the identity matrix
[
I
]

above is of the N ×N variety as it is formed by the product of

the N × N matrix
[
σy
]

and its inverse. In the last step, the trace of this identity matrix is
taken.

Substituting Eq. 47 into Eq. 42 then gives the expected result〈
χ2
〉

= N (48)

Finding the expectation value of the best-fit χ2 will be based on Eq. 9 and begins〈
χ2
〉

=
〈(
yT − yfitT

) [
σ−1
y

] (
y − yfit

)〉
(49)
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The yfit are replaced by Eq. 6 and its transpose yfitT = aT
[
JT
]

giving〈
χ2
〉

=
〈(
yT − aT

[
JT
]) [

σ−1
y

] (
y −

[
J
]
a
)〉

(50)

Substituting Eq. 23 and its transpose aT = yT
[
J†T

]
then gives〈

χ2
〉

=
〈(
yT − yT

[
J†T

] [
JT
]) [

σ−1
y

] (
y −

[
J
] [
J†
]
y
)〉

=
〈
yT

(
1−

[
J†T

] [
JT
]) [

σ−1
y

] (
1−

[
J
] [
J†
])
y
〉

(51)

Expanding the product gives〈
χ2
〉

= (52)〈
yT

([
σ−1
y

]
−
[
σ−1
y

] [
J
] [
J†
]
−
[
J†T

] [
JT
] [
σ−1
y

]
+
[
J†T

] [
JT
] [
σ−1
y

] [
J
] [
J†
])
y
〉

Substituting Eq. 22 and its transpose
[
J†T

]
=
[
σ−1
y

] [
J
] [
X−1

]
for

[
J†
]

and its transpose in the

last three matrix products, and then in the final term substituting
[
X
]

for the combination[
JT
] [
σ−1
y

] [
J
]

(Eq. 19) and then canceling the product
[
X
] [
X−1

]
shows that, aside from their

signs, the last three matrix products are all the same and given by
[
σ−1
y

] [
J
] [
X−1

] [
JT
] [
σ−1
y

]
.

Taking account of the signs and using the form of the first matrix product, the resulting
expression is thus 〈

χ2
〉

=
〈
yT

[
σ−1
y

]
y
〉
−
〈
yT

[
σ−1
y

] [
J
] [
J†
]
y
〉

(53)

Applying Eq. 45 to the first term in Eq. 53 gives〈
yT

[
σ−1
y

]
y
〉

= µT
[
σ−1
y

]
µ+ Tr

[
σ−1
y

] [
σy
]

= µT
[
σ−1
y

]
µ+ Tr

[
I
]

= µT
[
σ−1
y

]
µ+N (54)

Applying Eq. 45 to the second term in Eq. 53 gives〈
yT

[
σ−1
y

] [
J
] [
J†
]
y
〉

= µT
[
σ−1
y

] [
J
] [
J†
]
µ+ Tr

[
σ−1
y

] [
J
] [
J†
] [
σy
]

(55)

Substituting Eq. 27 and then Eq 7 provides the simplification of the first term on the right.

µT
[
σ−1
y

] [
J
] [
J†
]
µ = µT

[
σ−1
y

] [
J
]
α

= µ
[
σ−1
y

]
µ (56)

Simplification of the second term in Eq. 55 begins by substituting Eq. 22 for
[
J†
]

and then
proceeds as follows

Tr
[
σ−1
y

] [
J
] [
J†
] [
σy
]

= Tr
[
σ−1
y

] [
J
] [
X−1

] [
JT
] [
σ−1
y

] [
σy
]
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= Tr
[
σ−1
y

] [
J
] [
X−1

] [
JT
]

= Tr
[
J†T

] [
JT
]

= Tr
[
J
] [
J†
]

= Tr
[
J†
] [
J
]

= Tr
[
I
]

= M (57)

In the second line
[
σ−1
y

] [
σy
]

=
[
I
]

is used and in the third line the transpose of Eq. 22 is

used. In the fourth line the equality between the trace of a square matrix (
[
J
] [
J†
]
) and its

transpose (
[
J†T

] [
JT
]
) is used. But note that

[
J
] [
J†
]

appearing in line four is an N × N

matrix whereas
[
J†
] [
J
]

appearing in line five is an M ×M matrix. Consequently, the two
matrices cannot be equal. However, their traces are equal and only that fact is used in line
five. The substitution is valid because for any two matrices

[
A
]

of shape N ×M and
[
B
]

of

shape M ×N , both
[
A
] [
B
]

and
[
B
] [
A
]

exist and the rules for multiplication and trace give

Tr
[
A
] [
B
]

=
N∑
i=1

M∑
j=1

[
A
]
ij

[
B
]
ji

=
M∑
j=1

N∑
i=1

[
B
]
ji

[
A
]
ij

= Tr
[
B
] [
A
]

(58)

In the sixth line of Eq. 57, Eq. 29 giving
[
J†
] [
J
]

as the M ×M identity matrix is used and
in line seven its trace is taken. Finally, using Eq. 56 and Eq. 57 in Eq. 55 and combining this
with Eq. 54 in Eq. 53 then gives 〈

χ2
〉

= N −M (59)

Note the familiar result that the expectation value of χ2 is its number of degrees of freedom.
The true χ2 based on Eq. 39 has no adjustable parameters and the number of degrees of freedom
is the number of data points. The best-fit χ2, on the other hand, is minimized by adjusting the
M fitting parameters a, thereby reducing the number of degrees of freedom by M . Note that
the best-fit χ2 is not just smaller than the true χ2 on average. It is, in fact, always smaller.
It is not always smaller by the amount M—the reduction can be smaller or larger than this.
The reduction is, in fact, a χ2 random variable with M degrees of freedom.

Relationship to non-linear regression

Fitting data to functions that are nonlinear in the fitting parameters can be complicated and
problematic. There are many software packages that do the job well and no attempt will be
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made here to describe the many algorithms that can be used. The intent of this section is to
give the conditions under which the linear regression results are still applicable and to show
the required modifications.

As an example, consider a nonlinear function F ({αj}, x) of a single independent variable x
and a set of M fitting parameters {αj}. Taking the {αj} as the true parameters, the function
evaluated at the data set’s values for xi then gives the true means µi from which the data set’s
N measured yi values are samples.

µi = F ({αj}, xi) (60)

As with linear regression, the best-fit parameters will be denoted {aj} and are defined as
those values that minimize the χ2. The {aj} then determine the best-fit y-values.

yfit
i = F ({aj}, xi) (61)

Most linear regression results, with modifications to be discussed shortly, will be sound
as long as the fitting function is well approximated by a first-order Taylor series about any
set of parameters {βj} in the vicinity of the best-fit values {aj}—say, within a range of a
few parameter uncertainties σj for each parameter. The {βj} should not be considered crude
initial guesses. Rather, they should be considered “almost there” values—say, the next-to-last
parameter set in the typical iterative approach to finding the best-fit {aj}. Then F ({βj}, xi)
would be the fitted y-values associated with that almost-there solution.

The first-order Taylor series expansion that the fitting function would need to closely follow
would be written

yfit({aj}, xi) = F ({βj}, xi) +
M∑
j=1

∂F ({βj}, xi)
∂βj

(aj − βj) (62)

First, we define

∆yi = yi − F ({βj}, xi) (63)

∆yi will play the role of a modified measured y-value in a linear regression model for a nonlinear
fit. This modified data is the deviation of the raw data yi from the almost-there fit values
given by F ({βj}, xi). Next, we define

∆aj = aj − βj (64)

∆aj will play the role of a modified fitting parameter and is the deviation of each aj from its
almost-there value βj. Finally, we define the N ×M set of coefficients

[
J
]
ij

=
∂F ({βj}, xi)

∂βj
(65)

Considered as an N ×M matrix of values, each column of the matrix will play the role of a
modified fitting function fj(xi) and the whole matrix

[
J
]

will play the same role it played in
the linear regression formulation.
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Note how this formulation is exact in the case that F ({βj}, x) is linear in the fitting
parameters. Consequently, all results in the following sections will also apply to a linear
regression.

With these three definitions, the χ2—now to be considered a function of the fitting param-
eters {aj}—becomes

χ2 =
N∑
i=1

(
yi − yfit({aj}, xi)

)2

σ2
i

=
N∑
i=1

(
yi − F ({βj}, xi)−

∑M
j=1

dF ({βj},xi)

dβj
(aj − βj)

)2

σ2
i

=
N∑
i=1

(
∆yi −

∑M
j=1

[
J
]
ij

∆aj

)2

σ2
i

(66)

where Eq. 62 was substituted for yfit({aj}, xi) in the second line and Eqs. 63-65 were substituted
in the third line.

Equation 66 can be rewritten

χ2 =
(
∆yT −∆aT

[
JT
]) [

σ−1
y

] (
∆y −

[
J
]

∆a
)

(67)

where ∆y is the column vector (of length N) representing the ∆yi and ∆a is the column vector

(of length M) representing the ∆aj. ∆yT and ∆aT and
[
JT
]

are the transposed quantities.
Equation 63 shows that the elements of ∆y are simply offset from the elements of y

describing the raw, measured yi. Consequently, variances and covariances of the ∆yi are the
same as those of the yi and, consequently,

[
σy
]

and its inverse
[
σ−1
y

]
do not need modification.

The χ2 of Eq. 67 is now in a form analogous to Eq. 11 and the values for the ∆aj that
minimize it can be determined by following the linear regression formulation already presented,
i.e., by taking derivatives with respect to each ∆aj and setting them all equal to zero at the
minimum. We need not go through that formulation again and simply use the results. The
solution for the best-fit ∆aj analogous to Eq. 23 becomes

∆a =
[
J†
]

∆y (68)

where the pseudoinverse
[
J†
]

is still given by Eq. 22 with the
[
X
]

matrix still given by Eq. 19,

but with the elements of
[
J
]

now given by Eq. 65.
What was a direct solution in the linear regression treatment has become a solution in-

volving the changes from the almost-there solution in the nonlinear case. The solution gives
the changes ∆a (from the almost-there parameter values) in terms of raw data deviations ∆y
(from the almost-there fit values).

Eq. 64 is then used to find the best-fit {aj} from the solution values {∆aj} and the starting
parameter set {βj} from which the solution is defined.

aj = βj + ∆aj (69)
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An important result implied from the linear regression treatment is that
[
X−1

]
is the

covariance matrix for the {∆aj}. The simple constant offset relation between aj and ∆aj
expressed by Eq. 69 implies that the set {aj} and {∆aj} will have the same variances and

covariances and thus,
[
X−1

]
is also the covariance matrix for the parameters {aj} themselves.

Note that any set of parameters {βj} sufficiently close to the best-fit values {aj} (along with

all the derivatives in the matrix
[
J
]

evaluated at {βj}) contain all the information necessary to

find the {aj} and its covariance matrix. Further note that the best-fit {aj} would also be such
a set. Of course, this set must give ∆a = 0, but it would still give non-zero values for {∆yi}
and a well-defined, non-zero covariance matrix

[
X−1

]
. Consequently, the difference between a

covariance matrix evaluated from an almost-there parameter set {βj} and one evaluated from

the best-fit parameter set {aj} should be small. Nonetheless,
[
X−1

]
is normally reevaluated

one last time based on the derivative matrix
[
J
]

evaluated at {aj} rather than {βj}.
One might try iterating Eqs. 68 and 69 (with the ending values of {aj} used as the starting

values {βj} for the next iteration) as an algorithm to find the best-fit parameters. However,
this algorithm has known problems if the starting parameters are not close enough to the best-
fit {aj}. More sophisticated nonlinear fitting routines use algorithms better suited for reliably
finding a solution from more distant initial guesses. Nonetheless, this approach does work for
limited applications and is demonstrated in the Excel spreadsheet called Matrix Algebra and
Regression on the lab web site.

Dependence of χ2 on the fitting parameters

It is worthwhile to understand how χ2 would vary about its minimum as the parameters
vary about their best-fit values {aj}. The χ2 of Eq. 67 will be the starting point, but it is
to be understood now to use {aj} as the almost-there parameter set and the ∆aj are to be
interpreted as giving the deviations from that set. We will not try to prove again that ∆a = 0
at the χ2 minimum, but rather ask for the form of χ2 away from the minimum as a function
of ∆a.

Expanding the right side of Eq. 67 gives

χ2 = ∆yT
[
σ−1
y

]
∆y (70)

−∆yT
[
σ−1
y

] [
J
]

∆a−∆aT
[
JT
] [
σ−1
y

]
∆y + ∆aT

[
JT
] [
σ−1
y

] [
J
]

∆a

Since all deviations are now from the best-fit values, ∆yi = yi − yfit
i and the first term is

just the best-fit χ2, which we now call χ2
0. The equivalent of Eq. 20 for the nonlinear regression

formulation is [
X
]

∆a =
[
JT
] [
σ−1
y

]
∆y (71)

Using this and its transpose to eliminate the ∆y and its transpose in the second and third
term and substituting Eq. 19 in the fourth shows that, aside from their signs, the final three

http://www.phys.ufl.edu/courses/phy4803L/statistics/Matrix Algebra and Regression.xls
http://www.phys.ufl.edu/courses/phy4803L/statistics/Matrix Algebra and Regression.xls
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terms are equivalent and evaluate to ∆aT
[
X
]

∆a. After subtracting χ2
0 from both sides, the

final result is

∆χ2 = ∆aT
[
X
]

∆a (72)

where ∆χ2 = χ2 − χ2
0 is the deviation of χ2 from its best-fit value.

∆χ2 = 1 Rule

Recall that
[
X−1

]
is the covariance matrix with diagonal elements giving the parameter vari-

ances σ2
j and off-diagonal elements giving the parameter covariances σjk. Moreover

[
X
]

and
[
X−1

]
are inverses of one another and both have a self-transpose symmetry, that is,[

X
]
kj

=
[
X
]
jk

and
[
X−1

]
kj

=
[
X−1

]
jk

.

In the very rare case where all parameter covariances are zero, the covariance matrix
[
X−1

]
is diagonal (zero for all off-diagonal elements). Consequently, its inverse

[
X
]

is also diagonal

with elements
[
X
]
jj

= 1/σ2
j and the χ2 variation given by Eq. 72 becomes

∆χ2 =
M∑
j=1

(∆aj)
2

σ2
j

(73)

This equation gives ∆χ2 = 1 when any single parameter is moved one standard deviation σk
from its best-fit value. Changing any other parameters independently increases the χ2 in a
like manner—quadratically, in ∆aj/σj.

While the independent increases in χ2 given above for uncorrelated parameters is consistent
with the ∆χ2 = 1 rule, the rule requires a caveat for the general—and vastly more likely—
case of correlated parameters in which case a χ2 increase from one parameter change can be
partially canceled by appropriate changes in the other parameters. Offsetting any parameter
one standard deviation from its best-fit value (keeping the others at their best-fit values)
generally gives a ∆χ2 ≥ 1. However, the ∆χ2 value always decreases back to one if the other
parameters are then re-optimized for the smallest possible χ2 holding the offset parameter fixed
one-sigma from its best-fit value. This second χ2 minimization is the caveat to the ∆χ2 = 1
rule.

To see how the rule arises,1 the parameter vector ∆a is partitioned into a vector ∆a1 of
length K and another vector ∆a2 of length L = M −K.

∆a =

 ∆a1

∆a2

 (74)

1This derivation is from R. A. Arndt and M. H. MacGregor, Nucleon-Nucleon Phase Shift Analysis by
Chi-Squared Minimization in Methods of Mathematical Physics, vol. 6, pp. 253-296, Academic Press, New
York (1966).
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The parameters are ordered so those in the second group will be offset from their best-fit values
to see how the χ2 changes if the parameters in the first group are automatically re-optimized
for any variations in that second group. At the end of the derivation, the second group will
be taken to consist of a single parameter to prove the ∆χ2 = 1 rule.

The matrix
[
X
]

is then partitioned into an K ×K matrix A, an L×L matrix C, a K ×L
matrix B and its L×K transpose BT

[
X
]

=


[
A
] [

B
]

[
BT

] [
C
]
 (75)

Note that the self-transpose symmetry of
[
X
]

implies that same symmetry for the square

matrices
[
A
]

and
[
C
]

and is why the two off-diagonal matrices
[
B
]

and
[
BT

]
are transposes

of one another.
Equation 72 then becomes

∆χ2 = ∆aT
[
X
]

∆a

=
(

∆aT1 ∆aT2
)

[
A
] [

B
]

[
BT

] [
C
]

 ∆a1

∆a2



=
(

∆aT1 ∆aT2
)

[
A
]

∆a1 +
[
B
]

∆a2[
BT

]
∆a1 +

[
C
]

∆a2


= ∆aT1

[
A
]

∆a1 + ∆aT1
[
B
]

∆a2 + ∆aT2
[
BT

]
∆a1 + ∆aT2

[
C
]

∆a2 (76)

Now we consider ∆a2 to be fixed and adjust ∆a1 to minimize ∆χ2 for this fixed ∆a2. The
minimization proceeds as usual; finding this value of ∆a1 requires solving the set ofK equations
obtained by setting to zero the derivative of ∆χ2 with respect to each ∆aj, j = 1...K in ∆a1.
The equation for index j becomes

0 =
d∆χ2

d∆aj

= δTj
[
A
]

∆a1 + ∆aT1
[
A
]
δj + δTj

[
B
]

∆a2 + ∆aT2
[
BT

]
δj (77)

where δj = d∆a1/d∆aj is the unit column-vector with a single 1 in the jth row, and δTj is its
transposed row vector. All terms are scalars and the first two and second two are identical—as
the expressions are simply transposes of one another. Dividing both sides by two, Eq. 77 can
then be taken to be

0 = δTj
[
A
]

∆a1 + δTj
[
B
]

∆a2 (78)
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and the full set of all K of these equations is the vector equation

0 =
[
A
]

∆a1 +
[
B
]

∆a2 (79)

which has the solution

∆a1 = −
[
A−1

] [
B
]

∆a2 (80)

where
[
A−1

]
is the inverse of

[
A
]

and is also a self-transpose matrix. Inserting this equation
and its transpose in Eq. 76 then gives

∆χ2 = ∆aT2
[
BT

] [
A−1

] [
A
] [
A−1

] [
B
]

∆a2 −∆aT2
[
BT

] [
A−1

] [
B
]

∆a2

−∆aT2
[
BT

] [
A−1

] [
B
]

∆a2 + ∆aT2
[
C
]

∆a2 (81)

After canceling an
[
A−1

] [
A
]

=
[
I
]

in the first term, the first three terms are all identical

(aside from their signs) and the equation can be rewritten

∆χ2 = ∆aT2
([
C
]
−
[
BT

] [
A−1

] [
B
])

∆a2 (82)

Note that this equation gives ∆χ2 as a function of the parameters in a subset of its parameter
space without specifying the values for the other parameters. Whenever this is done the
re-optimization of all unspecified parameters for a minimum χ2 is implied.

Now we must consider the inverse matrix
[
X−1

]
. It can be put in the same submatrix form

[
X−1

]
=


[
A′
] [

B′
]

[
B′T

] [
C ′
]
 (83)

The equation
[
X−1

] [
X
]

=
[
I
]

then gives

[
I
]

=


[
A′
] [

B′
]

[
B′T

] [
C ′
]



[
A
] [

B
]

[
BT

] [
C
]


=


[
A′
] [
A
]

+
[
B′
] [
BT

] [
A′
] [
B
]

+
[
B′
] [
C
]

[
B′T

] [
A
]

+
[
C ′
] [
BT

] [
B′T

] [
B
]

+
[
C ′
] [
C
]
 (84)

Consequently the K ×K and L× L matrices in the top left and lower right must be identity
matrices and the L×K and K×L matrices in the upper right and lower left must be identically
zero. That is, [

A′
] [
A
]

+
[
B′
] [
BT

]
=
[
I
]

(85)[
A′
] [
B
]

= −
[
B′
] [
C
]

(86)
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[
B′T

] [
A
]

= −
[
C ′
] [
BT

]
(87)[

B′T
] [
B
]

+
[
C ′
] [
C
]

=
[
I
]

(88)

Multiplying Eq. 87 by
[
A−1

]
on the right gives[

B′T
]

= −
[
C ′
] [
BT

] [
A−1

]
(89)

or [
B′T

] [
B
]

= −
[
C ′
] [
BT

] [
A−1

] [
B
]

(90)

which, when inserted into Eq. 88 gives[
C ′
] ([

C
]
−
[
BT

] [
A−1

] [
B
])

=
[
I
]

(91)

Multiplying both sides of Eq. 91 by
[
C ′−1

]
(the inverse of the L × L covariance submatrix[

C ′
]
) on the left gives ([

C
]
−
[
BT

] [
A−1

] [
B
])

=
[
C ′−1

]
(92)

which can be substituted into Eq. 82 to get

∆χ2 = ∆aT2
[
C ′−1

]
∆a2 (93)

The transpose of Eq. 89 is [
B′
]

= −
[
A−1

] [
B
] [
C ′
]

(94)

(since
[
A−1

]
and

[
C ′
]

are self-transpose matrices). Multiplying on the right by
[
C ′−1

]
gives[

B′
] [
C ′−1

]
= −

[
A−1

] [
B
]

(95)

Substituting this in Eq. 80 then gives

∆a1 =
[
B′
] [
C ′−1

]
∆a2 (96)

Now we can consider the case that ∆a2 consists of a single parameter, say the very last
one, ∆aM . The rest are in ∆a1 and consist of the set {∆aj}, j = 1...M −1. From Eq. 83,

[
C ′
]

would then be a 1× 1 submatrix of the covariance matrix and would be given by
[
C ′
]

= σ2
M

and thus
[
C ′−1

]
= 1/σ2

M . Solving Eq. 93 for σ2
M then gives

σ2
M =

(∆aM)2

∆χ2
(97)

Furthermore, the submatrix
[
B′
]

would be the last column of the covariance matrix (less the

last element, σ2
M). Thus, it is a 1× (M − 1) matrix whose elements are the covariances of the
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other variables with aM ; [B′]1j = σjM . Each element of Eq. 96 is then ∆aj = σjM∆aM/σ
2
M .

Eliminating σM using Eq. 97 and solving for σjM then gives

σjM =
∆aj∆aM

∆χ2
(98)

If we further restrict ∆χ2 = 1, these last two equations give ∆aM = ±σM , and σjM =
∆aj∆aM . This is the complete ∆χ2 = 1 rule.

Equations 97 and 98 are a more general form of the ∆χ2 = 1 rule that can be used
with such programs as Microsoft Excel’s Solver that perform minimizations but do not return
the parameter variances or covariances. The procedure consists of first finding the best-fit
parameters {aj} and the corresponding χ2

0 via a minimization including all parameters. Next
a parameter of interest aM is changed by an arbitrary amount ∆aM (no larger than a few
standard deviations σM) and the program is used again to minimize the χ2, but this time with
the parameter of interest kept fixed, i.e., aM is not included in the parameter list. The new χ2

and the new parameter values {a′j} are recorded. ∆χ2 = χ2 − χ2
0 and all parameter changes

∆aj = a′j − aj are calculated and used with Eqs. 97 and 98 to find the parameter’s variance
σ2
M and its covariances σjM .

The ∆χ2 = 1 rule answers the question: “What are the possible values for parameter ak
such that the χ2 can still be kept within one of its minimum?” Taking the partitioned set
{a2} to include only that one variable, Eq. 93 gave the answer: inside the interval ak ± σk.
Taking the partitioned set {a2} to consist of two elements, that same equation can also be
used to answer the question: “What are the possible pairs of values for parameters j and k
such that the χ2 can be kept within one of its minimum?” The answer turns out to be those
values inside an ellipse in the space of aj and ak on which ∆χ2 = 1.

To find this ellipse from Eq. 93, the inverse [C ′−1] of a 2 × 2 submatrix of the covariance
matrix will be required. The covariance submatrix for two parameters, say, a and b is expressed

[
C ′
]

=

 σ2
a σab

σab σ2
b

 (99)

and its inverse is given by

[
C ′−1

]
=

1

σ2
aσ

2
b − σ2

ab

 σ2
b −σab

− σab σ2
a

 (100)

Equation 93 then gives

∆χ2 =
1

σ2
aσ

2
b − σ2

ab

(
∆a ∆b

) σ2
b −σab

− σab σ2
a

( ∆a
∆b

)

=
1

σ2
aσ

2
b − σ2

ab

(
∆a ∆b

)( σ2
b∆a− σab∆b
−σab∆a+ σ2

a∆b

)

=
1

σ2
aσ

2
b − σ2

ab

[
σ2
b (∆a)2 − 2σab∆a∆b+ σ2

a (∆b)2
]

(101)
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With the correlation coefficient ρab defined by

ρab =
σab
σaσb

(102)

and defining each parameter offset in units of its standard deviation by

δa =
∆a

σa
(103)

δb =
∆b

σb
(104)

Eq. 101 becomes

∆χ2 =
1

1− ρ2
ab

[
δ2
a − 2ρabδaδb + δ2

b

]
(105)

With no correlation, ρab = 0 and the ∆χ2 = 1 contour is given by

1 = δ2
a + δ2

b (106)

This is the equation for the unit circle.
The effect of non-zero correlation is clearer in the space of the variables δ′a and δ′b rotated

45◦ counterclockwise from those of δa and δb and defined by

δ′a =
δa + δb√

2

δ′b =
−δa + δb√

2
(107)

The inverse transformation is then

δa =
δ′a − δ′b√

2

δb =
δ′a + δ′b√

2
(108)

Figure 1 shows these axes along with various ∆χ2 = 1 ellipses.
Using the transformation to δ′a and δ′b in Eq. 105 for the ∆χ2 = 1 contour gives

1 =
1

1− ρ2
ab

(δ′a − δ′b√
2

)2

− 2ρab

(
δ′a − δ′b√

2

)(
δ′a + δ′b√

2

)
+

(
δ′a + δ′b√

2

)2


=
1

1− ρ2
ab

[
δ′2a + δ′2b − 2ρab

(
δ′2a
2
− δ′2b

2

)]

=
1

(1 + ρab)(1− ρab)
[
δ′2a (1− ρab) + δ′2b (1 + ρab)

]
=

δ′2a
(1 + ρab)

+
δ′2b

(1− ρab)
(109)
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Figure 1: Three ∆χ2 = 1 ellipses are inscribed in a unit square, each with principal axes along the
square’s diagonals. The green circle is for uncorrelated parameters, the red ellipse is for a medium
positive correlation and the cyan ellipse is for a strong negative correlation.

With correlation, the ∆χ2 = 1 contour is an ellipse with its principal axes along the δ′a
and δ′b directions, i.e., oriented at 45◦ to the δa and δb axes and intersecting the δ′a-axis at
±
√

1 + ρab and intersecting the δ′b-axis at ±
√

1− ρab. The correlation coefficient is limited to
−1 < ρab < 1 and so the semimajor axis (long radius) must be between one (ρab = 0) and

√
2

(ρab = ±1) and the semiminor axis (short radius) must be between zero (ρab = ±1) and one

(ρab = 0). Notice that the ellipse area is given by π
√

(1 + ρab)(1− ρab) = π
√

1− ρ2
ab and goes

from a maximum of π for ρab = 0 down to zero as ρab goes toward ±1.
When |ρab| � 1, the ellipse is only slightly squashed along one axis and slightly expanded

along the other. When ρab is positive, the major axis is along δ′a and the ellipse has extra area
in the two quadrants where δa and δb have the same sign. If one parameter turns out to be
above its best estimate, the other is a more likely to be above its best estimate. When ρab is
negative, the major axis is along δ′b and the ellipse has extra area in the two quadrants where
δa and δb have the opposite sign. If one parameter turns out to be above its best estimate, the
other is more likely to be below its best estimate.

With nonlinear fitting functions, the linearity with fitting parameters (first order Taylor
expansion) is assumed to be valid over several standard deviations of those parameters. If the
data set is small or has large errors, the fitting parameter standard deviations may be large
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enough that this condition is violated. It may also be violated if the fitting function derivatives
depend too strongly on the parameters. Consequently, it is a good idea to test this linearity
over an appropriate range. (For linear fitting functions, the formulation is exact and such a
test is unnecessary.)

Finding the covariance matrix elements using Eq. 97 for the variances and Eq. 98 for the
covariances should use parameter offsets that achieve values for ∆χ2 that are neither too small
nor too large. To get a ∆χ2 = 9, Eq. 97 predicts that aM will need to be offset by 3σM . For
values of ∆χ2 much larger than this, the fitting function will be evaluated for parameters
where the Taylor expansion of Eq. 62 need not and may not be valid.

Because it is often difficult to predict where the Taylor expansion might fail, it is good
practice to try the procedure with several values of ∆aM . Choose parameter values both
above and below aM and choose various sizes for ∆aM—to get ∆χ2 values up to least nine
or so. Results for the variances and covariances that are relatively constant over this range
of approximately ±3σM would be an indication that the Taylor expansion is probably valid
over this range as well. The 68%, 95%, and 99% confidence intervals would then likely be
very close to the standard ones of aM ± σM , aM ± 2σM , am ± 3σM , respectively. On the other
hand, variance and covariance calculations that differ significantly between ∆χ2 values of 0.1
and 1 would be an indication that the Taylor expansion is already failing when aM is only one
standard deviation from the best fit. In this case, a more sophisticated statistical analysis will
be needed to determine accurate confidence intervals.

Rather than inspecting covariances directly, it is preferable to divide these off-diagonal ele-
ments of the covariance matrix by the product of the standard deviations of the two parameters
involved. This ratio then gives the correlation coefficients. Correlation among parameters must
be taken into account in any conclusions involving more than one of them. Correlations coef-
ficients near one indicate the two parameters involved have very similar effects on the fit and
can be particularly troublesome—even for conclusions involving only one of the parameters.


